

To: Village Board

From: Neal A. Winkler, Water Plant Operator.

RE: monthly report

Submitted for February 13th, 2024

Water Plant

- 1) Filter cleaning as needed. Cleaned 1 filter in January.
- 2) Fourth Quarter DBPs sample results, THMs at 41.3 ug/l quarterly at 72.4 ug/l, MCL is 80. Haa5 was 50 ug/l quarterly average at 64.08 MCL is 60. This put us over the limits. Still waiting for DOH to respond to my arguments that the lab made a mistake.
- 3) DEC selected our community to work with a technical assistance provider to aid in the development of a Drinking Water Source Protection Program. This is a voluntary program, and there will be no out-of-pocket costs to participating municipalities for developing their DWSP2 Plan. However, municipalities are expected to commit staff, resources (e.g., local data and source information, conference rooms) January 2024 and time to the process. The TA provider will work with the municipality to execute each step in the DWSP2 Framework, and the municipality will be very involved in the process and make the final decisions about implementation activities.
- 4) Working on a list of commercial customers that require backflow prevention as requested by DOH.
- Meter recommendation.
- 6) Caulfield Development cost recovery?
- 7) As of this report I have no updates from DEC on the logging issue. Continue to have elevated raw water turbidities during heavy rain events, as reflected in the number of filter cleanings.
- 8) Any questions or concerns feel free to call, text or Email.

Attachments

- 1) January, water plant flow report.
- 2) Disinfection By Products spread sheet

Respectfully, Neal A. Winkler, Water Plant Operator.

a o qu	nosp.	Kesiduai	11/2/11	0	0.36																				0	0.89						000	0.87			2.12	0.71
6		# CL2 Ke	-	∞0	00	6	6	10	10	×	0 0	ח מ	י ת	5 0	7 00	~ c	× 5	2 0	0 0	× 5) O	ر د د	10	21 (2	7	_	_	∞ 0	י ת	o (ກ (n (xo ç	O	270	8.7
ŀ	~	±		81	73	64	55	45	35	7.0	70	N N	ן ת	0	142	135	127	111/	109	101	91	82	7.7	62	52	45	38	31	23	14	<u>.</u>	<2/148	139	131	121	2,044	89
	~ .	<u>a</u>		0.997	1.156	1.054	0.983	1 074	1 161	1.101 1.101	1.139	1.159	1.255	1.221	1.183	1.03/	1.008	1.095	1.154	0.958	926.0	0.981	1.014	1.075	1.118	1.182	1.220	1.101	1.024	1.176	1.145	1.050	1.006	0.922	0.938	33.562	1.083
	-	Turbidity	NTC		0.082	0.072	0.084	0.101	0.101			0.087	0.108	0.063	0.091	0.111				0.094	0.074	990.0	0.089			0.062	0.077	0.073	0.063	0.078			0.056	090.0	990.0	1.657	0.079
VIIIage		Residual	mg/l	99.0	0.29	92.0	0.67	20.0	0.00	0.85	0.91	1.15	0.87	0.81	0.74	0.43	0.72	0.81	0.81	0.31	09.0	0.73	0.44	08.0	98.0	1.14	0.71	0.97	0.88	0.56	0.72	0.59	0.71	0.39	0.44	21.860	0.71
	Clearwell	(in. below	full)	0	12	15	17	- L	9 9	10	2	9	16	16	18	17	13	4	4	23	26	31	30	22	10	11	20	21	26	24	21	13	15	27	32	518	17
Kaw	Water (Turbidity (NTO	0.277	0.237	0.223	0.40	0.210	0.231	0.199	0.215	0.217	0.237	0.379	0.503	0.354	0.285	0.467	0.338	0.291	0.162	0.151	0.139	0.135	0.131	0.124	0.124	0.127	0.433	1.014	0.891	0.402	0.306	0.239	0.194	9.241	0.298
	Filter Bed		NTO	0.049	0.046	7700	0.044	0.042	0.042	0.041	0.041	0.040	0.040	0.041	0.042	0.044	0.045	0.043	0.051	0.045	0.056	0.056	0.054	0.047	0.046	0.046	0.051	0.047	0.047	0.051	0.063	0.073	0.065	0.059	0.055	1.512	0.049
		Precip.	(in.)	000	0000	000	0.00	0.02	.5"s	0.00	4.5"s	3"5	00.00	0.25	0.25	.5"s	0.30	2"5	2"5	0.00	4"s	0.00	0.00	0.00	000	000	000	2"6	06.0	1.10	0.20	0.00	0.50	0.00	0.00	3.52	
		Effluent	_	272 051	3/3/3/1 11 600	000,010	549,952	531,844	513,030	383,218	407,877	581.742	549 703	559.177	536,974	495.183	379.021	389,445	576,856	575 368	590 996	572 121	546 189	398 507	AD5,854	FA3 171	550 350	550,330	567 797	517 700	AD2 725	404 602	586 374	598 896	545,594	15,702,841	207
		Eilter Flow		4	341,405	444,/32	531,365	545,329	532,779	470,747	420.738	774 626	7CV VV3	744,427	540,002	573 880	765 263	402,233	450 342	430,342	000,000	590,003	126,280	5/0,200	011,340	457,930	460,103	526,480	540,923	37 1,202	216,150	472,046	427,723	E10 623	569,051	15,572,980	
		ü		Jan-24	н	2	3	4	2	Sat 6	Sat. 5	oull. /	× 0	D (TO 13	T C	77	Sdt. 13	3un. 14	t	1 12	17	TX	13	Sat. 20	Sun. 21	22	23	24	57	26	Sat. 27	27 uns	67	31	Total	